An improved Milstein method for stiff stochastic differential equations
نویسندگان
چکیده
منابع مشابه
Split-step Forward Milstein Method for Stochastic Differential Equations
In this paper, we consider the problem of computing numerical solutions for stochastic differential equations (SDEs) of Itô form. A fully explicit method, the split-step forward Milstein (SSFM) method, is constructed for solving SDEs. It is proved that the SSFM method is convergent with strong order γ = 1 in the mean-square sense. The analysis of stability shows that the mean-square stability p...
متن کاملStabilized multilevel Monte Carlo method for stiff stochastic differential equations
A multilevel Monte Carlo (MLMC) method for mean square stable stochastic differential equations with multiple scales is proposed. For such problems, that we call stiff, the performance of MLMC methods based on classical explicit methods deteriorates because of the time step restriction to resolve the fastest scales that prevents to exploit all the levels of the MLMC approach. We show that by sw...
متن کاملAn analysis of stability of milstein method for stochastic differential equations with delay
-This paper deals with the adapted Milstein method for solving linear stochastic delay differential equations. It is proved that the numerical method is mean-square (MS) stable under suitable conditions. The obtained result shows that the method preserves the stability property of a class of linear constant-coefficient problems. This is also verified by several numerical examples. (~) 2006 Else...
متن کاملImproved Stabilized Multilevel Monte Carlo Method for Stiff Stochastic Differential Equations
An improved stabilized multilevel Monte Carlo (MLMC) method is introduced for stiff stochastic differential equations in the mean square sense. Using S-ROCK2 with weak order 2 on the finest time grid and S-ROCK1 (weak order 1) on the other levels reduces the bias while preserving all the stability features of the stabilized MLMC approach. Numerical experiments illustrate the theoretical findings.
متن کاملExplicit methods for stiff stochastic differential equations
Multiscale differential equations arise in the modeling of many important problems in the science and engineering. Numerical solvers for such problems have been extensively studied in the deterministic case. Here, we discuss numerical methods for (mean-square stable) stiff stochastic differential equations. Standard explicit methods, as for example the EulerMaruyama method, face severe stepsize...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Difference Equations
سال: 2015
ISSN: 1687-1847
DOI: 10.1186/s13662-015-0699-9